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ABSTRACT 

 

In Hartley-Kang's paper, they proposed a very efficient 

method to determine the center of radial distortion by 

finding the epipole in a radial distorted image of a planar 

calibration pattern, whereas the original planar calibration 

pattern is directly treated as an image to construct an image 

pair together with the radial distorted image. After 

determined the center of radial distortion, a least square 

method was utilized to recover the radial distortion function 

using the monotonicity constraints. In this paper, we present 

a convex optimization method to recover the radial 

distortion function using the same constraints as those 

required by Hartley-Kang's method, whereas our method 

can obtain better results of radial distortion correction. The 

experiments validate our approach.  

 

Index Terms— Radial distortion, distortion correction, 

convex optimization, camera calibration 

 

1. INTRODUCTION 

 

The ideal pinhole model is often employed in algorithms of 

3D recovery from 2D images in the field of computer vision. 

Unfortunately, for common commercially available cameras, 

they usually do not strictly satisfy the ideal pinhole model, 

i.e., some deviations may exist. Such deviations can be more 

complex, and are called lens distortions in literature [2]. 

There are many methods to model lens distortions. The most 

famous model was proposed by Brown [2] which described 

the radial, decentring and prism distortions.  

In fact, among these distortions, radial distortion is the 

most significant in recent cameras [14], [13], [7], [12], [9], 

[10], [8]. Other types of distortions are often little, and can 

be omitted in the calibration procedure of distortion 

correction. Some models were proposed for the radial 

distortion functions. Basu and Licardie [1] proposed the 

logarithmic distortion model. Devernay and Faugeras [4] 

presented the field-of-view distortion model. Fitzgibbon [5] 

recommended the division model with a single parameter. 

Ying and Hu [13] extended the unified imaging model of 

central catadioptric cameras to describe the radial distortion. 

Hartley and Kang [7] proposed the nonparametric model. 

Claus and Fitzgibbon [3] constructed the rational function 

distortion model for a wide range of radial distortions.  

In this paper, we only employ the same input image and 

the same constraints as those required in Hartley-Kang's 

paper [7] for radial distortion correction using planar 

calibration pattern. The input image is a radial distorted 

image of the planar calibration pattern. The constraints are 

the monotonicity constraints of the radial distortion function. 

The main difference between [7] and ours is that we utilize a 

convex optimization method to recover the radial distortion 

function, whereas a least square method was used in [7]. 

Numerical experiments illustrate that our method can get 

better results of radial distortion correction than the Hartley-

Kang's method [7]. 

The rest of this paper is organized as follows. Section 2 

introduces the notations and basic principles. Section 3 

presents the convex optimization method to recover the 

radial distortion function using the monotonicity constraints. 

Section 4 provides qualitative and quantitative evaluations 

using synthesized and real data to demonstrate the 

performance of our method. Section 5 concludes this paper 

with discussions. 

 

2. NOTATIONS AND BASIC PRINCIPLES 

 

In this section, we briefly introduce the Hartley-Kang's 

method [7] and some notions used in this paper. 

 

2.1. Determining the center of radial distortion 

 

Let an image point in the original radial distorted image 

or called distorted point, denoted as   . Let its 

corresponding distortion corrected point or called 

undistorted point, denoted as   . Indicate the center of 

radial distortion as  . Since these three points   ,    and    

should be collinear, we have, 

             
i.e., 

        
                                  (1) 

where      is a skew-symmetric matrix to represent cross 

product of vectors. Let    be a point on the planar 

calibration pattern, then    and its corresponding 



undistorted image point    are related by a 2D homography, 

i.e., 

                                         (2) 

Substituting (2) into (1), we obtain 

         
    

Let 

                                         (3) 

we obtain the usual fundamental matrix relation 

         

The center of radial distortion can be recovered as the left 

epipole of   [7].  

 

2.2. Recovering the 2D homography 

 

Since the distortion center   has been recovered, we can 

change the origin of the image coordinate system to  , 

namely, now the coordinates of   become            .  

Let  
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and  
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since  
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from (3), (4), (5) and (6), we have, 
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Therefore                            . Since   can be 

determined easily, from (7), we know that the first two rows 

of   can be determined, whereas the third row of   is still 

unknown. In Hartley-Kang's paper [7], they employed the 

least square method to recover the third row of   and the 

radial distortion function using the monotonicity constraints 

(due to lack of space, we do not introduce the method here, 

please refer to Section 5.3, 5.4, and 5.5 in [7] for details). In 

this paper, we present a convex optimization method to 

solve this problem, which is described in details below. 

 

3. METHOD USING CONVEX OPTIMIZATION 

 

After changed the origin of the image coordinate system to 

the center of radial distortion  , for a distorted point 

              and its corresponding undistorted point 

              , they satisfy, 

  
  

  
    

 

  
  

i.e., 
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where   is some unknown non-zero scale. Let a point on the 

planar pattern             , from (2), (5) and (8) we have,  

 
  

  

 

   

               
               
               

  
 
 
 
  

                 

             
             
              

  

From above equations, we may get three equations: 

 
  
 

  
 
  

  
 
             
              

  

 
 
             
              

 

  

 
 
             
              

  

After some manipulations, we obtain, 

  

                
                          

                                               

                                
                 

   

(9) 

Note that the first equation of (9) only provides constraint 

on the entries of the first two rows of  . Therefore, if given 

  correspondences, we may get   equations on the entries of 

the first two rows of  , i.e., 
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and a least square method can be used to recover these 

unknowns. Now, the entries of the third row of  , and the 

non-zero scales    (        ) for   distorted points are 

still unknown. From the last two equations of (9), and after 

some manipulations, we may obtain, 



 
 
 
 
 
 
   

   
       

   
                         

    
   

       
   

                          

                             

   
   

                              
   

 

   
   

                              
   

  
 
 
 
 
 

 
 
 
 
 
 
   
   
   
  

   
   

 
 
 
 
 

        (11) 

where 

                  
  

                   
  

Note that there exists arbitrary for the entries of the third 

row of   (see Section 5.3 in [7] for details), we cannot solve 

these unknowns in (11) using a least square method, and the 

monotonicity constraints of the radial distortion function 

should be required to solve the arbitrary [7], namely, the 

monotonicity constraints on   . We reorder the indices   so 

that   
  are in ascending order of their distance to the origin. 

By enforcing the monotonicity constraints, we obtain a 

convex optimization problem, 

                                      (12) 

subject to             

and        

where   is the coefficient matrix and   is the unknown 

vector in (11). We use the constraint      to avoid the 

trivial solution    , and meanwhile also make image 

points around the center of radial distortion almost no 

change after distortion correction. The system (12) 

represents a sparse convex quadratic program since     is 

positive semi-definite. The optimization of this problem can 

be solved easily using a modern numerical package [6], [11].  

 

4. EXPERIMENTS 

 

We perform a number of experiments, both simulated and 

real, to test the performance of the proposed algorithms. 

 

4.1. Simulation 

 

The simulated pinhole camera has the following parameters: 

   500,     400 and     300. The resolution of the 

simulated image is 800  600. We generated a planar 

calibration pattern with 23 23 grid. The position of the 

camera is fixed. The orientation and position of the planar 

pattern are changed. For each image taken by pinhole camera 

(see Fig. 1a), radial lens distortion is imposed into it using the 

division model proposed in [5] (see Fig. 1b). Gaussian noise 

with zero-mean and   standard deviation is added to the 

distorted images of these grid points. We vary the noise 

level   from 0 to 1 pixel. The estimated results of the radial 

distortion function are shown in Fig. 2. It is not difficult to 

find out that the recovered distortion curves using our 

method are closer to the ground truth than those estimated 

by the Hartley-Kang's method [7]. We applied the recovered 

radial distortion function to the original image, and radial 

distortion corrected images by using the Hartley-Kang's 

method and ours are shown in Fig. 3. Note that in the 

Hartley-Kang's method [7], it is required about twenty 

images of a planar pattern taken in different orientations and 

positions, to obtain satisfactory results of radial distortion 

correction (Totally 19 checkerboard images were required 

as shown in Fig. 3 of [7]). However, in this paper, we 

illustrate that only from a single image of a planar pattern, 

satisfactory results can still be obtained using our method. 

 

 
(a)                                                          (b) 

Fig. 1. (a) A synthesized image of a 23 23 grid using a pinhole camera. (b) 
A synthesized image with radial distortion from (a). 

 

 
(a)                                                   (b) 

 
(c)                                                   (d) 

Fig. 2. Comparisons between algorithms of recovering radial distortion 
function with respect to different noise levels. These graphs of radial 

distortion correction     versus radial position     using grid points from a 

single image as shown in Fig. 1b. The number labels are all in pixels. (a) 

noise level    0.25. (b)    0.5 (c)    0.75. (d)    1. 

 

 
 (a)                                                          (b) 

Fig. 3. Results of radial distortion correction from a single image as shown 

in Fig1b. (a) Using the Hartley-Kang's method [7].  (b) Using our method. 
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4.2. Real data 

 

A real image of a planar calibration pattern was taken by a 

Basler PIA2400-17gc Color high resolution machine vision 

camera with Fujinon FE185C046HA-1 Fish-Eye Lens, as 

shown in Fig. 4a. The resolution of the image is 800 600. 

The corrected image is shown in Fig. 4b. We also took some 

images in different scenes using the same camera as shown 

in Fig. 5a and Fig. 6a, and the corrected images are shown 

in Fig. 5b and Fig. 6b, respectively. All of these corrected 

images look very reasonable. 

 

 
(a)                                                          (b) 

 
Fig. 4. (a) A real image of a planar calibration pattern with radial distortion. 

(b) The corrected image from (a). 

 

5. CONCLUSIONS 

 

This paper presents a convex optimization method for radial 

lens distortion correction from a single image of a planar 

pattern using the monotonicity constraints of radial 

distortion function. In the Hartley-Kang's method, it is 

required about twenty images of a planar pattern taken in 

different orientations and positions, to obtain satisfactory 

results of radial distortion correction using a least square 

method. However, in this paper, we illustrate that only 

utilizing a single radial distorted image of a planar pattern, 

reasonable corrected results can still be obtained by using 

our method, and the results may be better than those from 

the Hartley-Kang's method in the same situation.  
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Fig. 5. (a) A real image of a book shelf with radial distortion. (b) The 

corrected image from (a). 
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Fig. 6. (a) A real image of a corridor with radial distortion. (b) The 

corrected image from (a). 
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