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Abstract. Many radial distortion functions have been presented to de-
scribe the mappings caused by radial lens distortions in common com-
mercially available cameras. For a given real camera, no matter what
function is selected, its innate mapping of radial distortion is smooth,
and the signs of its first and second order derivatives are fixed. However,
such differential constraints have been never considered explicitly in ex-
isting methods of radial distortion correction for a very long time. The
differential constraints we claimed in this paper are that for a given real
camera, the signs of the first and second order derivatives of the radial
distortion function should remain unchanged within the feasible domain
of the independent variable, although over the whole domain, or outside
of the feasible domain, the signs may change many times. Our method
can be somewhat treated as a regularization of the distortion function
within the viewing frustum. We relax the differential constraints by us-
ing a deliberate strategy, to yield the linear inequality constraints on the
unknown coefficients of the radial distortion function. It seems that such
additional linear inequalities are not difficult to deal with in recent exist-
ing methods of radial distortion correction. The main advantages of our
method are not only to ensure the recovered radial distortion function
satisfy differential constraints within the viewing frustum, but also to
make the recovered radial distortion function working well in case of ex-
trapolation, caused by the features used for distortion correction usually
distributed only in the middle part, but rarely near the boundary of the
distorted image. The experiments validate our approach.

1 Introduction

The ideal pinhole model is often employed in algorithms of 3D recovery from 2D
images in the field of computer vision. Unfortunately, for common commercially
available cameras, they usually do not strictly satisfy the ideal pinhole model,
i.e., some deviations may exist. Such deviations can be more complex, and are
called as lens distortions in literature [1]. There are many methods to model lens
distortions. The most famous model was proposed by Brown [1] which described
the radial, decentring and prism distortions. In fact, among these distortions,
radial distortion is the most significant in recent cameras [2], [3], [4], [5], [6],
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[7], [8], [9], [10], [11], [12]. Other types of distortions are often little, and can be
omitted in the calibration procedure of distortion correction.

Many kinds of radial distortion functions are presented to describe the radial
distortion [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12]. If we assume the center
of radial distortion is known in advance, we can define the distance from the
original distorted image point to the center of radial distortion as the distorted
radius rd, and the distance corresponding to the undistorted image point as the
undistorted radius ru. The radial distortion functions usually describe the rela-
tions between rd and ru, namely, rd = f(ru) or ru = g(rd) [1], [13], [14], [2], [15],
[16], [17]. For some cases of metric calibration, the view angle θ corresponding to
the undistorted image point is often chosen to replace of ru. Now, radial distor-
tion functions become rd = p(θ) or θ = q(rd) [18], [19], [20], [5], [12]. Basu and
Licardie [14] proposed the logarithmic distortion model. Devernay and Faugeras
[21] presented the field-of-view distortion model. Fitzgibbon [16] recommended
the division model with a single parameter. Ying and Hu [3], Barreto and Dani-
ilidis [4] extended the unified imaging model of central catadioptric cameras to
describe the radial distortion. Claus and Fitzgibbon [17] constructed the ratio-
nal function distortion model for a wide range of radial distortions. Hartley and
Kang [6] utilized a nonparametric model for radial distortion.

For radial distortion functions of real lenses estimated using different meth-
ods [18], [13], [15], [22], [23], [24], [25], [26], [27], [28], [19], [29], [20], we can easily
find a phenomenon that, the signs of their first and second order derivatives with
respect to the radius (i.e., rd or ru) or the view angle (i.e., θ) should remain un-
changed within the viewing frustum, namely, from zero to the maximum of the
radius or the view angle within the feasible domain. However, such constraints
are never considered explicitly in literature. One reason may be that someone
may think such constraints can be satisfied automatically. Indeed, without the
constraints, the signs may be changed within the feasible domain (Many exam-
ples often violated such constraints, such as, Fig. 3 and Fig. 7 in [27], and Fig.
8 in[22]). Another reason may be that to impose such constraints on existing
methods of radial distortion correction may bring difficulties to optimizations.
However, in fact, we demonstrate that if using a deliberate strategy, such con-
straints can often be relaxed to the linear inequality constraints on the unknown
coefficients of the radial distortion functions. Here, we take the 3-order poly-
nomial ru = g(rd) = k1rd + k2r

2
d + k3r

3
d as a very easy instance (Other order

polynomials can be dealt with in a very similar manner). If the original objec-
tive function in some recent existing method for radial distortion correction is
J = J(k1, k2, k3), the solution is corresponding to the global minimum of the
objective function:

min
k1,k2,k3

J(k1, k2, k3)

If we impose the differential constraints as claimed in this paper, the optimiza-
tion problem becomes
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min
k1,k2,k3

J(k1, k2, k3)

subject to k1 + 2rdk2 + 3r2dk3 > 0 for all 0 < rd ≤ rdmax

2k2 + 6rdk3 > 0 for all 0 < rd ≤ rdmax

where the first order derivative g′(rd) = k1 +2k2rd +3k3r
2
d = k1 +2rdk2 +3r2dk3,

the second derivative g′′(rd) = 2k2 + 6k3rd = 2k2 + 6rdk3, and rdmax is the
maximum of rd in a given distorted image taken by a real camera. The second
derivative greater than zero means that the radial distortion is barrel (And the
second derivative less than zero is corresponding to pincushion distortion). The
above optimization problem seems more difficult to solve. We relax it as follows:

min
k1,k2,k3

J(k1, k2, k3)

subject to k1 + 2rdik2 + 3r2dik3 > 0, i = 1, ..., n

2k2 + 6rdik3 > 0, i = 1, ..., n

where rdi are some sample points lying in between 0 and rdmax. The number
of sample points n, can be selected easily as some reasonable number, e.g., 100.
In this paper, we simply let rdi = i

nrdmax, i = 1, ..., n. Obviously, now the
constraints become the linear inequalities in the unknown coefficients. For pin-
cushion distortion, it can be solved in a very similar manner.

Recently, the division model with one coefficient proposed in [16] and its
extended versions with more coefficients are very popular and often employed
for radial distortion correction [17], [5], [7], [8], [9], [11], [30], [31], [32], [10], [33].
However, different from the polynomial models as discussed above, we cannot
relax differential constraints in the division models in a direct way, since the
constraints derived from differential constraints in the division models are no
longer linear inequalities in the unknown coefficients. However, in this paper we
use a deliberate strategy to show that such problems still can be relaxed to linear
inequalities, which will be discussed in details in the main text.

Furthermore, we take the method proposed in [22] as an instance to show
how to relax differential constraints in the extended division models, and what
changes may be caused by imposing the additional linear inequalities on the
process of optimization. In the original method proposed in [22], the unknown
coefficients of radial distortion were solved by finding the Moore-Penrose pseu-
doinverse of a matrix, i.e., it is a linear method. After imposing the additional
linear inequalities, the problem becomes a convex optimization. That means the
novel method considering differential constraints can still be solved easily, since
there are many software kits for convex optimization. It does not require initial
values, and any local minimum must be a global minimum. Especially, by com-
paring the experimental results from the original method in [22] and our novel
method with differential constraints, we can find out that our method is able
not only to ensure the recovered radial distortion function satisfy differential
constraints within the feasible domain, but also to make the recovered radial
distortion function working well in case of extrapolation.
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2 The Division Undistortion Model with Differential
Constraints

The division undistortion model is firstly proposed by Fitzgibbon [16], which
described the relations between rd and ru as follows:

ru = g(rd) =
rd

1 + k1r2d
(1)

There is only one coefficient k1 in the radial distortion function. We can easily
find out that, in general, k1 > 0 is corresponding to pincushion distortion, and
k1 < 0 is corresponding to barrel distortion. However, from Fig. 1a, we can find
that for some pincushion distortion, e.g., k1 = 1, the first order derivative of
g(rd) change the sign where rd = 1. Note that for a real lens, it cannot have
such curve.
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Fig. 1. (a) The curves of rd vs. ru under the division undistortion model, i.e., ru =
rd

1+k1r
2
d

, with different coefficient k1 (Similar figure is shown as Fig. 2 in [32]). We can

notice that for k1 = 1, the sign of the first order differential of the curve changes where
rd = 1. Note that for a real lens, it cannot have such curve. (b) The curves for the
denominator of the division undistortion model, i.e., g1(rd) = 1 + k1r

2
d with different

coefficient k1.

The first order derivative of g(rd) is

g′(rd) =
1− k1r2d

(1 + k1r2d)2
(2)

and the second derivative of g(rd) is

g′′(rd) =
−2k1rd(3− k1r2d)

(1 + k1r2d)3
(3)

For barrel distortion, since k1 < 0, g′(rd) and g′′(rd) are automatically greater
than zero in the feasible domain, i.e., 0 < rd ≤ rdmax (here we assume the
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denominator 1 +k1r
2
d not equal to zero, indeed such case means that the field of

view of the real camera may be larger than 180 degrees, which will be discussed in
the next section). Therefore, for barrel distortion with the division undistortion
model, the optimization problem becomes

min
k1

J(k1)

subject to k1 < 0

For pincushion distortion, g′(rd) should be greater than zero, and g′′(rd) is less
than zero. We cannot relax these differential constraints as the polynomial mod-
els described before, since the unknown coefficients of the radial distortion func-
tions are no longer linear inequalities. We notice a fact that, g′(rd) > 0 means
that 1−k1r2d > 0, since the denominator (1 +k1r

2
d)2 is always greater than zero.

Similarly, g′′(rd) < 0 means that k1 > 0 and 3 − k1r2d > 0. Since 1 − k1r2d > 0
and k1 > 0, must ensure that 3 − k1r2d > 0, for pincushion distortion with the
division undistortion model, the optimization problem becomes

min
k1

J(k1)

subject to k1 > 0

1− r2dik1 > 0, i = 1, ..., n

where rdi = i
nrdmax.

3 The Extended Division Undistortion Model with
Differential Constraints

Since the division undistortion model proposed by Fitzgibbon [16] only has one
coefficient, it is required to be extended with more coefficients to represent more
complex radial distortion functions [5], [7], [8], [9], [11], [30], [31], [32], [10], [33]:

ru = g(rd) =
rd

1 +
∑m

i=1 kir
2i
d

(4)

where 2m is the highest degree in the denominator. We indicate the denominator
of g(rd) as

g1(rd) = 1 + k1r
2
d + k2r

4
d + k3r

6
d (5)

Obviously, it is an even-degree polynomial. Some curves of g1(rd) corresponding
to different m are shown in Fig. 2. Now, we take m = 3 as an instance (Other
degrees can be dealt with in a very similar manner):

ru = g(rd) =
rd

1 + k1r2d + k2r4d + k3r6d
(6)

The first order derivative of g(rd) is

g′(rd) =
1− k1r2d − 3k2r

4
d − 5k3r

6
d

(1 + k1r2d + k2r4d + k3r6d)2
(7)



6 X. Ying et al.

The second derivative of g(rd) is

g′′(rd) =
−6k1rd + 2(k2

1 − 10k2)r3d + (6k1k2 − 42k3)r5d + 12k2
2r

7
d + 34k2k3r

9
d + 30k2

3r
11
d

(1 + k1r2d + k2r4d + k3r6d)3

(8)

For barrel distortion, since g′(rd) > 0 and g′′(rd) > 0 in the feasible domain
(here we assume the denominator 1+k1r

2
d+k2r

4
d+k3r

6
d not equal to zero, indeed

such case means that the field of view of the real camera may be larger than 180
degrees, which will be discussed later), we have

min
k1,k2,k3

J(k1, k2, k3)

subject to 1 − r2dik1 − 3r4dik2 − 5r6dik3 > 0, i = 1, ..., n

−6rdik1 + 2r3di(k
2
1 − 10k2) + r5di(6k1k2 − 42k3) + 12r7dik

2
2 + 34r9dik2k3 + 30r11di k

2
3 > 0

i = 1, ..., n

where rdi = i
nrdmax. However, we notice that the constraints from g′(rd) > 0

are linear inequalities in unknown coefficients, but the constraints from g′′(rd) >
0 are quadratic inequalities in unknown coefficients. As we know, in general,
an optimization problem with quadratic inequalities is not easy to be solved.
However, we find that the denominator of g(rd), i.e., g1(rd), its first and second
order derivatives, i.e., g′1(rd) = 2k1rd+4k2r

3
d+6k3r

5
d and g′′1 (rd) = 2k1+12k2r

2
d+

30k3r
4
d may satisfy g′1(rd) < 0 and g′′1 (rd) < 0 for barrel distortion (see Fig. 3 in

[27]). Therefore, for barrel distortion we have:

min
k1,k2,k3

J(k1, k2, k3)

subject to 1− r2dik1 − 3r4dik2 − 5r6dik3 > 0, i = 1, ..., n

2rdik1 + 4r3dik2 + 6r5dik3 < 0, i = 1, ..., n

2k1 + 12r2dik2 + 30r4dik3 < 0, i = 1, ..., n

(9)

where rdi = i
nrdmax. If the field of view of a real camera is larger than 180

degrees, the denominator of g(rd), i.e., g1(rd), can be equal to zero in some rd
corresponding to the view angle equal to 180 degrees, so g′(rd) and g′′(rd) are
undefined on this point. Therefore only g′1(rd) < 0 and g′′1 (rd) < 0 can be used
here, i.e., for barrel distortion with the field of view larger than 180 degrees, we
have

min
k1,k2,k3

J(k1, k2, k3)

subject to 2rdik1 + 4r3dik2 + 6r5dik3 < 0, i = 1, ..., n

2k1 + 12r2dik2 + 30r4dik3 < 0, i = 1, ..., n

where rdi = i
nrdmax. In Fig. 2b, we show some recovered curves estimated with

differential constraints as claimed in this paper.
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Fig. 2. (a)(c)(e)(g) Some recovered curves without differential constraints, for g1(rd) =∑m
i=1 kir

2i
d with different order m, where m = 3, 4, 5, 6, respectively (Similar figures are

shown as Fig. 3 in [27]). (b)(d)(f)(h) Some recovered curves with differential constraints
as claimed in this paper. Note that, the sample points are distributed within from 0 to
1.6. The portions of the curves with greater than 1.6 are the results of extrapolation.
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4 Imposing Differential Constraints on Radial Distortion
Correction Using the Constraints from the Images of
Three Collinear Points

There are so many radial distortion correction methods in literature. Due to lack
of space, we only show how to impose differential constraints on the method pro-
posed in [22]. For a distorted image point (ud, vd)T , if we establish the origin of
the image coordinate system to the center of radial distortion, its correspond-
ing undistorted image point (uu, vu)T under the extended division undistortion
model with m = 3 may satisfies:uuvu

1

 ∝
 ud

vd
1 + k1r

2
d + k2r

4
d + k3r

6
d

 (10)

where “ ∝ ” denotes equality up to a scalar, and r2d = u2d + v2d. For three undis-
torted image points (uui, vui)

T , i = 1, 2, 3, if they are collinear once rectified, we
have ∣∣∣∣∣∣

uu1 uu2 uu3
vu1 vu2 vu3
1 1 1

∣∣∣∣∣∣ = 0 (11)

From (9) and (10), we obtain [22],∣∣∣∣∣∣
ud1 ud2 ud3

vd1 vd2 vd3
1 + k1r

2
d1 + k2r

4
d1 + k3r

6
d1 1 + k1r

2
d2 + k2r

4
d2 + k3r

6
d2 1 + k1r

2
d3 + k2r

4
d3 + k3r

6
d3

∣∣∣∣∣∣ = 0

(12)

where r2di = u2di + v2di, i = 1, 2, 3. After some manipulations, and let

a1 = ud2vd3r
2
d1 − ud3vd2r2d1 + ud3vd1r

2
d2 − ud1vd3r2d2 + ud1vd2r

2
d3 − ud2vd1r2d3

a2 = ud2vd3r
4
d1 − ud3vd2r4d1 + ud3vd1r

4
d2 − ud1vd3r4d2 + ud1vd2r

4
d3 − ud2vd1r4d3

a3 = ud2vd3r
6
d1 − ud3vd2r6d1 + ud3vd1r

6
d2 − ud1vd3r6d2 + ud1vd2r

6
d3 − ud2vd1r6d3

b = ud2vd3 − ud3vd2 + ud3vd1 − ud1vd3 + ud1vd2 − ud2vd1

we have,
a1k1 + a2k2 + a3k3 = −b

If there are s triplets of points, we may get s equations as follows:

a1jk1 + a2jk2 + a3jk3 = −bj

where j = 1, ..., s. Then k1, k2, k3 can be solved as follows:

Ax = b

where

A =

a11 a21 a31...
a1s a2s a3s

 ,x =

k1k2
k3

 and b =

−b1...
−bs
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Therefore, if s > 3, we can obtain an overdetermined least squares problem:

min
x
‖Ax− b‖

The solution is:
x = A+b

where A+ is the Moore-Penrose pseudoinverse of A [22]. If impose differential
constraints on this optimization problem, we have

min
x
‖Ax− b‖

subject to 2rdik1 + 4r3dik2 + 6r5dik3 < 0, i = 1, ..., n

2k1 + 12r2dik2 + 30r4dik3 < 0, i = 1, ..., n

where rdi = i
nrdmax. The above system represents a sparse convex quadratic

program, and can be solved easily using a modern numerical package [34], [35].

5 Experiments

5.1 Simulation

We generate a mapping to simulate real radial distortion, and just select a part of
the whole feasible domain of the independent variable to test the performances
of methods with (i.e., our method) and without differential constraints (i.e.,
the method proposed in [22]). Gaussian noise with zero-mean and σ standard
deviation is added to sample points of the mapping (Note that, the sample points
are distributed within from 0 to 1.6. The portions of the curves with greater than
1.6 as shown in Fig. 2 are the results of extrapolation). We vary the noise level
σ from 0 to 1 percent. The estimated results of the radial distortion functions
with different degrees are shown in Fig. 2. It is not difficult to find out that our
method with differential constraints is very suitable to make the recovered radial
distortion function working well in case of extrapolation.

5.2 Real Data

A real image of a corridor was taken by a Basler PIA2400-17gc Color high
resolution machine vision camera with Fujinon FE185C046HA-1 Fish-Eye Lens,
as shown in Fig. 3a. The resolution of the image is 800×600. From this distorted
image, only about 10 sample points on an image curve of a space line are chosen.
The corrected image is shown in Fig. 3cd. It is not difficult to find out that the
correction results of all images of lines from our method look very reasonable.
We also download some images with serious distortion from internet, and one
of them is shown in Fig. 4a. We selected about 10 sample points on a single
line image curve, and the corrected images are shown in Fig. 4cd. The corrected
image from our method also looks very reasonable.
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Fig. 3. (a) A real image of a corridor with radial distortion. (b) The recovered radial
distortion functions with (i.e., our method) and without differential constraints (i.e.,
the method proposed in [22]). (c) The corrected image from the method without d-
ifferential constraints [22]. (d) The corrected image from our proposed method with
the differential constraints of (9). Note that [22] requires ten or more line images in a
single image to obtain good results (see Fig. 10 in [22]). However, in this paper, with
extremely less requirements, i.e., only some points lying on one line image, we can
still obtain satisfactory results. From (b), we may find out that the recovered radial
distortion function obtained from [22] maps some image points onto points at infinity,
which obviously violated the differential constraints.
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6 Discussions

Our approach seems able to be generalized to radial distortion models other
than the polynomial and division models as discussed before. We take the dis-
tortion model used by Kanatani, Eq (5) in [12] as an example: θ = 2 tan−1(c0rd+
c1r

3
d + c2r

5
d + · · · ). Our problem solving approach is based on a common-sense

observation: Generally speaking, c0rd + c1r
3
d + c2r

5
d + · · · should satisfy the dif-

ferential constraints, otherwise, 2 tan−1(c0rd + c1r
3
d + c2r

5
d + · · · ) may “usually”

violate the differential constraints. Note that, “c0rd + c1r
3
d + c2r

5
d + · · · satisfies

the differential constraints”, is neither sufficient nor necessary condition for
“2 tan−1(c0rd + c1r

3
d + c2r

5
d + · · · ) satisfies the differential constraints”. For a

polynomial, which satisfies the differential constraints, we can easily convert it
into linear inequalities as claimed in Section 1 of this paper. Even though such
“simple” “relaxation” is not very “perfect” in mathematics, it seems to seek some
better way to implement such differential constraints is very difficult. For other
distortion functions, such as, log, sin, and etc., if they contain a polynomial(or
even some function with a linear form with respect to distortion coefficients), we
can also convert them into linear inequalities in the same manner. Especially, for
the extended division model, the polynomial is in the denominator as discussed
in Section 3.

7 Conclusions

Radial lens distortion is the most significant one among all kinds of lens dis-
tortions in recent cameras. Many models or called radial distortion functions
with respect to the radius or the view angle are presented to describe radial lens
distortion, and a lots of distortion correction methods are proposed by choosing
the suitable one among these different radial distortion functions to accomplish
their ideas. However, the differential constraints of these radial distortion func-
tions were omitted in literature for a very long time. In this paper, we suggest
the differential constraints should be imposed in the existing methods for radial
distortion corrections. The constraints are that the signs of the first and second
order derivatives of a radial distortion function with respect to the radius or the
view angle should remain unchanged within the viewing frustum, or the feasi-
ble domain of the radius or the view angle, namely, from zero to the maximum
of the radius or the view angle corresponding to the distorted image, although
over the whole domain, the signs may be changed many times. Our method can
be somewhat treated as a regularization of the distortion function within the
viewing frustum.

To impose differential constraints on radial distortion correction, is very im-
portant and useful, since many examples often violated such constraints, such
as, Fig. 3 and Fig. 7 in [27], and Fig. 8 in [22]. To impose differential constraints
onto existing methods, is not trivial, but usually very, very difficult. We find
some feasible approach to relax such differential constraints to linear inequali-
ty constraints on the unknown coefficients of the radial distortion functions. We
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imposed these constraints into the method proposed in [22] as an instance, which
changes the original pseudo-inverse based linear method [22] into a novel convex
optimization based method. It seems that to impose differential constraints on
some existing methods of radial distortion correction may not bring too many
difficulties into optimizations. Note that this paper just takes [22] as an example
to show that we can implement differential constraints in some existing distor-
tion correction methods. However, in fact, our basic idea is inspired from an
observation: Some curves in Fig. 8 of [22], are very flat in some parts, look very
strange, and do not satisfy the differential constraints. It is not difficult to in-
corporate the linear inequalities from differential constraints into the procedure
of recovering the distortion center as proposed in [22]. Note that [22] requires
ten or more line images in a single image to obtain good results (see Fig. 10 in
[22]). However, in this paper, with extremely less requirements, i.e., only some
points lying on a single line image, we can still obtain satisfactory results.
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