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Abstract—We propose a method of simultaneously calibrating the radial distortion function of a camera and the other internal

calibration parameters. The method relies on the use of a planar (or, alternatively, nonplanar) calibration grid which is captured in

several images. In this way, the determination of the radial distortion is an easy add-on to the popular calibration method proposed by

Zhang [24]. The method is entirely noniterative and, hence, is extremely rapid and immune to the problem of local minima. Our method

determines the radial distortion in a parameter-free way, not relying on any particular radial distortion model. This makes it applicable to

a large range of cameras from narrow-angle to fish-eye lenses. The method also computes the center of radial distortion, which, we

argue, is important in obtaining optimal results. Experiments show that this point may be significantly displaced from the center of the

image or the principal point of the camera.

Index Terms—Radial distortion, camera calibration, fundamental matrix.

Ç

1 INTRODUCTION

RADIAL distortion is a significant problem in the analysis
of digital images. Although this problem was widely

studied by photogrammetrists striving for extreme accu-
racy, it has been largely ignored in the extensive literature
on structure and motion of the past decade or so. (Less than
five pages are devoted to this topic in [12].) Almost
exclusively, methods have involved iterative techniques
such as bundle adjustment.

At the same time, several different camera models have
been proposed for different types of cameras. The most
popular radial distortion model is the even-order poly-
nomial model that models radial distortion as scaling by a
factor 1þ �1r

2 þ �2r
4 þ . . . .

Different papers suggest the alternatives of multiplying
or dividing by this factor. The idea of using only even order
terms is questionable at best and, in any case, such a model
does not hold for fish-eye lenses, where the distortion
becomes infinite toward the periphery and, hence, cannot
be accurately modeled by a polynomial. Iterative optimiza-
tion techniques can (in theory) handle any parameterized
model, but issues of convergence, initialization, and over-
fitting can be troublesome. Parametrized distortion curves
may not extrapolate well. In addition, by building the
model into the bundle-adjustment problem, one cannot take
advantage of more sophisticated techniques of polynomial
or function approximation (see [1]).

In this paper, we prefer to ignore the issue of choosing any
particular radial distortion model by adopting a model-free
approach. The only assumption we make on the radial

distortion function is that it is monotonic. Despite this, it is
possible to determine the radial distortion curve. This way,
the problem of fitting a parameterized function model (if
required) is separated out from the estimation of the
distortion curve and makes our method applicable to all (or
at least most) lenses.

Iterative optimization methods can be troublesome due
to lack of convergence, choosing an initial estimate, and
determining a stopping criterion. The advantage of our
algorithm is that it is entirely noniterative. This makes it fast
and immune to these problems of iterative techniques.
Sometimes, the cost of using a noniterative technique is that
it can minimize some arbitrary cost function unrelated to
the noise model. Thus, they can be very sensitive to noise.
On the other hand, the linear models that we use are closely
associated with the optimal model. Although iterative
refinement gives some improvement, it is minimal.

Another feature of our method that distinguishes it from
most of the computer-vision approaches to radial distortion
is that we also compute the center of distortion.

It is common in the literature to assume that the center of
distortion, e, is known, usually at the center of the image. This
is not a safe assumption in general. The center of distortion
can be displaced from the image center by many factors, such
as offset of the lens center from the CCD center, slight tilt of
the sensor plane with respect to the lens, misalignment of the
individual components of a compound lens, and cropping of
the image. In cheap consumer cameras, available at a cost of a
few hundred dollars, it should not be assumed that the optics
of the camera are accurate since these effects make little
difference to subjective image quality.

The importance of determining the center of distortion
has long been recognized in the photogrammetry commu-
nity. As enunciated by Clarke et al. [6]: “attention must be
paid to even small details, such as the location of the
principal point,1 if residuals are to be optimally minimized.”
They further state: “There will be an optimum location of
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this point as a result of correctly modelling the distortion. It
will not be possible to correct for [errors due to incorrect
estimation of the center of distortion] by using the decenter-
ing distortion parameters to compensate ½. . .�. Furthermore,
it will not be possible to correct for this error using the
exterior orientation parameters ½. . .�.”

By experimentation, we show that the usual assumption
that the center of distortion is at the center of the image is
not valid.

The disadvantage of our method is that it requires a
simple calibration grid. We briefly explore the extension of
our method to autocalibration methods that do not use a
calibration grid. This is, indeed, possible and works with
exact measurements, but our observation is that it is
extremely sensitive to noise.

2 PRIOR WORK

The work on radial distortion removal is extensive. Photo-
grammetry methods usually rely on known calibration points
or structures (for example, [3], [4], [7], [21]). Most often cited is
the plumb line technique of Brown [4], which carries out
radial distortion correction by straightening the images of
straight lines in the world. Tsai [21] uses corners of regularly
spaced boxes of known dimensions for full camera calibra-
tion, including radial distortion, whereas Faig [7] requires
that the points used be coplanar. Wei and Ma [22] use
projective invariants to recover radial distortion coefficients.

Becker and Bove [2] map straight lines onto a unit sphere
and find both radial and decentering coefficients that
minimize the vanishing point dispersion. (The user has to
manually group parallel lines together—each group should
have a unique vanishing point.) Swaminathan and Nayar
[17] proposed a user-guided self-calibration approach. The
distortion parameters are computed from user-selected
points along projections of straight lines in the image. Stein
[16] describes a more flexible approach, requiring only point
correspondences between multiple views. He uses epipolar
and trilinear constraints and searches for radial distortion
parameters that minimize the errors in these constraints.

Interestingly, there is much less work published on fish-
eye lens calibration. Most approaches use an ideal projection
model (for example, [5]) or use the distortion model meant
for rectilinear lenses by adding more nonlinear terms (for
example, [15]). Xiong and Turkowski [23] use a cubic
polynomial to represent the mapping between the latitude
angle and the polar distance for fish-eye lenses. They use
multiple overlapping images to extract these coefficients
(minimizing the brightness difference in the overlap areas).
Strictly speaking, fish-eye lenses are noncentral, that is, they
do not have a single point of projection. However, the
deviation of light rays from an effective single point of
projection is slight (see, for example, [14]) and we make the
central assumption for fish-eye lenses in our work. In
addition, because of the wide field of view of fish-eye lenses,
we characterize radial distortion in terms of angles rather
than pixels.

There has recently been renewed interest in estimating
radial distortion, based on techniques of projective geometry.
By incorporating one lens distortion parameter into the
epipolar constraint involving the fundamental matrix,
Fitzgibbon [8] simultaneously solves for both. He casts the
problem as a quadratic-eigenvalue problem, which can then
be easily solved using a numerical library. This technique was

later generalized to omnidirectional cameras [13]. Indepen-
dently of our work, Thirthala and Pollefeys [20] proposed a
linear technique to recover radial distortion using multifocal
tensors. They assume the center of distortion is known (at the
image center) and use the observation that the vectors
between the distorted and undistorted points pass through
a common point to reduce the problem to estimating a
2D trifocal tensor. They extended this work to nonplanar
scenes using a quadrifocal tensor in [19]. Most recently, Tardif
and Sturm [18] have considered self-calibration of a general
circularly symmetric calibration model, including the estima-
tion of radial distortion using geometric techniques.

3 OVERVIEW

Our main technique for radial distortion correction involves
the use of a calibration pattern on which are marked points
with known locations. The pattern may be planar or 3D,
though, in practical applications, a planar calibration
pattern is perhaps simpler to use and works just as well.
Points on a planar calibration pattern would ideally be
mapped to undistorted points in the image under perspec-
tive camera geometry by a 2D homography. In reality, in the
presence of radial distortion, we do not observe these ideal
or undistorted points. Nevertheless, the essence of radial
distortion calibration is to compute this ideal homography,
thereby correcting the radial distortion.

A sequence of images of the calibration pattern are taken
in different orientations. The method can work with a single
image, though the best results are obtained with several
images (10 images would be a reasonable number). This
acquisition of calibration images is similar to the way it is
done in the popular method of Zhang [24] for camera
calibration. Once the images are acquired, the next step is to
identify and find the coordinates of the known calibration
points in the images. It is not necessary to find all such
points. To simplify this procedure, we prefer to use a
calibration grid with a checkerboard pattern since it is
relatively easy to extract the vertices automatically from the
images. However, any other pattern may be used.

Our procedure for computing the radial distortion of the
camera is based on two main ideas. The first idea is to exploit
the analogy between the radial displacement of points under
radial distortion and the motion of points away from a focus
of expansion when a camera moves toward a scene. By using
techniques originally applied to two-view structure and
motion (specifically, the fundamental matrix), we are able to
compute the center of radial distortion and also, up to three
remaining degrees of ambiguity, the homographies mapping
the points on the calibration grid to their corresponding
undistorted or ideal points in the image.

The second idea is that the remaining ambiguity in these
homographies may be resolved by enforcing two simple
constraints: that the distortion is circularly symmetric, mean-
ing that the amount of distortion is dependent only on a
point’s distance from the center of distortion, and that the
correspondence between the undistorted radius of a point
and its distorted radius is a monotonic function—in other
words, the order of points in terms of their distance from the
center of distortion is not changed by the radial distortion.
With these two simple assumptions, it is possible to remove
the ambiguity and compute the imaging homographies
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uniquely. In fact, with a slight simplification, this may be
done by a linear algorithm.

Once the image homographies have been computed, we
are in possession of both undistorted and distorted points. If
many images are used, then we have a large number of such
pairs. A scatter plot of the undistorted radius versus the
distorted radius shows the form of the calibration curve. This
curve may then be used to correct any other images captured
with the same camera.

The procedure outlined computes the homographies
relating the calibration grid and the image. This allows us to
now use the calibration procedure of Zhang [24] for
calibration of a projective (pinhole) camera. At least three
images are required for this. Thus, both the radial distortion
and the internal camera calibration parameters are com-
puted from the same set of calibration images.

Using a 3D calibration pattern. Much the same procedure
applies in the case where a 3D calibration pattern is used.
Instead of image homographies, we are concerned with
pinhole camera projection. The role of the fundamental
matrix in the above description is taken by an analogous 3� 4
matrix with similar properties.

Methods not using a calibration grid. The use of the
calibration grid allows for the greatest degree of accuracy.
However, in some instances, it might be convenient to do
without a calibration grid at all. This is a natural extension,
analogous to the way ordinary calibration of a camera may be
performed using a calibration grid or, alternatively, by
autocalibration using only correspondences between multi-
ple images. Some autocalibration methods involve the use of
multiview tensors [12] that relate corresponding points in
several views. Similarly, our methods for calibration-grid-
free radial distortion correction involve the use of multiview
tensors.

We briefly describe methods for computing radial
distortion using images of a planar or nonplanar scene
using multiview tensors. These involve the use of a trifocal
3� 3� 3 tensor for the planar scene case or a similar
quadrifocal tensor for the case of a general scene. In these
methods, we also, as before, compute the center of
distortion of the camera. Although these methods are
correct in theory, it has been our observation that they are
sensitive even to extremely small amounts of noise and are
not suited for practical use. For this reason, we do not carry
out extensive testing.

The situation is much more favorable if we assume that
the center of distortion is known. In this case, the tensors
involved become much smaller. In the planar scene case,
instead of a trifocal tensors of size 3� 3� 3, a tensor of size
2� 2� 2 may be used. For the general case, the quadrifocal
tensor decreases from size 3� 3� 3� 3 to 2� 2� 2� 2.
Radial distortion correction with known center of distortion
using these tensors has been investigated thoroughly in
independent work by Thirthala and Pollefeys [20], [19] and,
for that reason, will not be considered further in this paper.

The range of techniques covered in this paper is shown
in Fig. 1. The emphasis is on techniques associated with the
use of a planar calibration grid. The method is simple,
robust, has a linear solution, and is an easy add-on to the
popular calibration method of Zhang [24]. The other
methods are included for completeness, but are not likely
to be as useful as this preferred method.

4 THE RADIAL DISTORTION MODEL

In our model for radial distortion correction, we ignore
decentering distortion, which is commonly due to lack of
alignment of different lens elements. This can lead to
nonradial (tangential) components of lens distortion. We
assume that distortion is radial. The imaging process
therefore is made up of several steps:

1. Projection. Points are projected onto the image plane
by the ideal camera via the mapping

~xu ¼ ½ I j0 �X;

where X is expressed in the camera coordinate
frame.

2. Radial distortion. The distorted point ~xd is given by

~xd ¼ ~eþ �ð~xu � ~eÞ;

where � represents the distortion ratio and ~e is the
center of distortion. The distortion ratio � depends on
the point ~xu and might perhaps more properly be
written as �ð~xuÞ.

3. Pixel sampling. The details of the pixel coordinate
system are encapsulated in the calibration matrix K.
The point ~xd is mapped to the pixel image point
given by

xd ¼ K ~xd:

In this formulation, the tilde in ~xu, ~xd, and ~e indicates
that it is measured in geometric focal length units. We may
also define xu ¼ K~xu and e ¼ K~eu to get the undistorted
point and center of distortion in pixel coordinates. Since K

represents an affine transformation of coordinates and
affine transformation preserve length ratios along straight
lines, we see that the pixel coordinates are related by

xd ¼ eþ �ðxu � eÞ;

with the same � as before.
Ambiguity. There is an ambiguity between the degree of

radial distortion, represented by �, and the magnification
factor (focal length parameter) of the calibration matrix K. In
particular, if � is replaced by �� (where � is constant for all
points) and K is multiplied on the right by the diagonal
matrix diagð�; �; 1Þ, then the resulting mapping from world
to pixel coordinates in the image is unchanged. A reason-
able and usual way of resolving this ambiguity is to choose
the radial distortion ratio �ð~xuÞ such that, to first order, it is
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equal to unity near the center of distortion. Thus, to first
order near the center of distortion, we may write xd ¼ xu.

In this paper, we will not always enforce this condition
during the computations, but the estimated radial distortion
function � and calibration matrix K can be corrected at the
end to conform to this convention.

Radial symmetry. Since lenses are generally ground to
be circularly symmetric, without decentering distortion, it
may be assumed that the distortion factor � is a function
only of the radius ~r ¼ k~xu � ~ek. It is often assumed that it
may be expressed as a function of the “pixel radius,”
r ¼ kxu � ek. However, this is not the same thing unless the
image has square pixels, in which case K represents a scaled
Euclidean coordinate transform. At one point in the
description of the algorithm, it will be assumed that the
radial distortion factor � is circularly symmetric. Later on, it
will be pointed out that there is a practical way in which
nonsquare pixels can be dealt with effectively.

5 DISTORTION ESTIMATION USING A PLANAR

PATTERN

We now proceed to describe our method for estimating the
radial distortion curve.

5.1 Finding the Distortion Center

Throughout this paper, our major assumption relating to
radial distortion is that a point in an image is moved radially
from its undistorted point xu to its distorted point xd. Thus,
the distortion is referenced to a center of radial distortion e
according to the relationship

xd ¼ eþ �ðxu � eÞ;

where

xu ¼ K ½ I j0 � EX ¼ PX;

with E being a 3D Euclidean coordinate transformation that
maps the point X into the camera coordinate system.

Our simplest method for estimating the center of radial
distortion involves the use of a calibration rig consisting of a
plane with several distinguishable points. The positions of
the points are assumed known in an Euclidean coordinate
frame on the plane. A suitable such rig would be a checker-
board pattern, with the vertices of the squares forming our set
of points; it is not necessary to recognize a distinguished
vertex since any vertex can serve as the coordinate origin.

We give an intuitive description of our idea before
writing the mathematical formalities. The pattern of known
points is projected into the image by an ideal nondistorted
camera, and then the points are each moved from their
“initial” to their “final” position by expansion away from
(or toward) a center of distortion. We can compare this with
the motion of points seen by a camera moving forward
toward a scene. In this case, the points also undergo a radial
expansion and the center of expansion is known as the
center of expansion or, more generally, the epipole. It is well
known how to find the epipole—we compute the funda-
mental matrix [12]. The situation is entirely analogous here
and we can compute the center of radial distortion by
computing the fundamental matrix relating the known
coordinates of points on our calibration pattern and the
measured positions of the points in the distorted image. The

center of radial distortion is simply the epipole computed
from this fundamental matrix.

Let xci be points with known coordinates on a planar
calibration grid and xdi be the corresponding points in the
distorted image. The calibration pattern points xci and the
undistorted image points xui (in pixel coordinates) are related
by a homography H according to xui ¼ Hxci . Note that the
superscripts u, d, and c are used to distinguish the undistorted,
distorted, and calibration points and the subscript i runs over
all points.

The points xui are next distorted radially away from the
center of distortion e to give

xdi ¼ eþ �iðxui � eÞ:

Note that the distortion factor �i is typically different for
each point. We multiply this expression on the left by
½e�� (the skew-symmetric 3� 3 matrix representing the
cross product), resulting in ½e��xdi ¼ �i½e��xui , where the
terms e disappear when multiplied by ½e��. However,
since xui ¼ Hxci , we have

½e��xdi ¼ �i½e��Hxci :

Finally, multiplying on the left by xd>i and observing that
xd>i ½e��xdi ¼ 0, because ½e�� is skew symmetric, we obtain

0 ¼ �ixd>i ð½e��HÞxci :

Writing F ¼ ½e��H, we have the usual fundamental matrix
relation xd>i Fxci ¼ 0. The matrix F may be called the funda-
mental matrix for radial distortion. F may be computed in the
usual way [12] from several point correspondences and the
center of radial distortion can be extracted as the left epipole.

In the case where there is no radial distortion at all, the
above computation of the fundamental matrix is unstable
and the estimated value of e is essentially arbitrary and
meaningless. If there is no radial distortion, then it does not
make much sense to talk about a center of distortion.
Without radial distortion, the distortion factor �i will equal
unity for each point and the distortion equation xdi ¼
eþ �iðxui � eÞ reduces to xdi ¼ xui , independent of e. This
degenerate situation is easily detected during the computa-
tion of the fundamental matrix. In such a case, there will
exist a two-parameter family of possible fundamental
matrices consistent with the data [12]. An example of this
situation is given in Section 6.

5.2 Multiview Methods

Instead of using a single image for computation of the
distortion center, we may consider how to take advantage
of several views of a calibration grid. We consider all of the
points in all images indexed by a single index i and denote
by kðiÞ the image that the ith point belongs to. The
fundamental equation then becomes

xd>i ð½e��HkðiÞÞxci ¼ xd>i FkðiÞx
c
i ¼ 0:

From this, one can compute each of the matrices Fk
individually.

Next, one wishes to find the vector e as the simultaneous
left null-space generator of all the Fk. Since the matrices Fk are
computed separately, there will not be a single vector
satisfying e>Fk ¼ 0 for all k. Instead, we find the least-squares
solution to the set of equations e>Fk ¼ 0, where this is solved
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using all Fk at once. For each value of k indexing all of the
available images, we obtain a set of three equations of the
form e>fkj ¼ 0. Here, j ¼ 1; . . . ; 3 and fkj is the jth column of
Fk. The least-squares solution to the set of all such equations
gives an estimate of the center of distortion.

5.3 Mapping Calibration Grid to Image Plane

Next, we wish to find the homographies Hk mapping the
calibration grid to the image plane. We can solve for the
homography matrix Hk by factoring the fundamental matrix
as Fk ¼ ½e��Hk. Note, however, that this factorization is not
unique, because ½e�� is singular. In addition, an exact
factorization is not possible unless the vector e is in the left
null space of Fk.

The result of the computation of e in the previous section
will be a vector e that does not exactly satisfy e>Fk for any k. It
is possible to correct each Fk by projecting onto the subspace
perpendicular to e>. However, this a posteriori correction of
each of the matrices Fk is not ideal. A preferable method is to
repeat the computation of each Fk with known epipole. In
doing this, it is convenient to change the image coordinates
first so that e is the coordinate origin ð0; 0; 1Þ> (in homo-
geneous coordinates). We carry out all subsequent computa-
tions in this coordinate system and make an appropriate
correction at the end.

Thus, we may compute Fk and Hk directly by solving the
equations

xd>i Fkx
c
i ¼ xd>i ð½e��HkÞxci ¼ 0 ð1Þ

individually for each image k using points belonging to that
image. Note that, if e ¼ ð0; 0; 1Þ>, then the final row of Fk is
zero, so we only solve for the six other entries of Fk. Then, the
homography Hk can be written down directly from Fk.
Namely, Hk ¼ ½f>2 ;�f>1 ; 0�, where the semicolon means that
we stack the rows f>i of F on top of each other.

This technique of computing epipoles first and subse-
quently reverting to the original point correspondences to
solve for the projection matrices was used in [12], [11] for
computing the trifocal tensor. A further refinement described
in [11] is to iterate over the value of the epipole e to minimize
the residual corresponding to the solution of the system (1).

Each Hk is not uniquely defined by this method, since it

computes only the first two rows of each Hk. In fact, the last

row of Hk may be arbitrary. Generally, in factoring F ¼ ½e��H,

we may replace H by Hk þ ev> for any arbitrary v without

changing the form of the equation. This is because ev>

cancels with ½e��. Note that, since e ¼ ð0; 0; 1Þ>, only the

third row of ev> is nonzero, so all of the ambiguity of Hk
occurs in the third row.

We now turn to finding the final row of each homo-
graphy Hk. Various methods of determining the unknown
vector v are available. Essentially, this problem is solved in
[20] by considering a specific polynomial parametrization of
the radial distortion curve. We prefer a parameter-free
method of doing this based on two assumptions:

1. The distortion is circularly symmetric. Thus, the
radial distortion of an image point depends only on
its distance from the center of distortion.

2. An ordering or monotonicity condition, that is, the
radial distance of points from the radial center after

distortion is a monotonic function of their distance
before distortion.

The first condition will not hold in general unless the pixels
are square. However, it turns out, in practice, not to be
critical to the success of our method, which works well even
with nonsquare pixels, and, in fact, the aspect ratio of the
pixels naturally falls out of the computation. The second
condition is an essential property of any camera and,
indeed, it would be a strange camera that did not satisfy
this condition since it would mean that the correspondence
between distorted and undistorted image points was not
one-to-one. Otherwise stated, some points in the scene
would appear at more than one point in the image.

We consider a single homography Hk and temporarily
drop the subscript k. Once we know the center of distortion of
the camera, we may change coordinates in the image so that
the center of distortion is the origin of pixel coordinates. In
this case, e ¼ ð0; 0; 1Þ> in homogeneous coordinates and, so,
the ambiguity in Hþ ev> exists only in the last row of H. Let Ĥ
consist of the first two rows of H so that H ¼ ½Ĥ; v>� (this
notation means that v> is the final row of H). In the following
discussion, xd and xu are intended to represent two vectors,
the dehomogenized vector representation of the points. On
the other hand, xc represents a homogeneous three-vector
representation of the calibration point. Now, defining
ðx̂u; ŷuÞ> ¼ x̂u ¼ Ĥxc, we see that Hxc ¼ ½Ĥxc; v>xc� and,
dehomogenizing, we obtain

xu ¼ ðx̂u; ŷuÞ=ðv>xcÞ ¼ Ĥxc=ðv>xcÞ:

Thus, the effect of v> is to stretch the point x̂u by the
factor 1=ðv>xcÞ, which depends on the point xc.

We now compute the radii of the distorted and
undistorted points, setting rd ¼ kxdk and r̂u ¼ kx̂uk and,
finally, ru ¼ kx̂u=ðv>xcÞk ¼ r̂u=jv>xcj. The notation k � k is
used here to mean the radius of the point (its distance
from the center of distortion).

These are the positive radii of the points. However, we
need to consider a signed radius ru, whereby the positive
radial direction for a point xu is oriented toward the
distorted point xd. Consequently, we define the signed
radius r̂u to be positive or negative, depending on whether
xd>x̂u is positive or negative. That is,

r̂u ¼ signðxd>x̂uÞkx̂uk

and

ru ¼ r̂u=ðv>xcÞ;

where the absolute value no longer appears in the denomi-
nator. This radius ru may be positive or negative and it is
positive if the radial vector toward xu is in the same direction
as the distorted point xd. If v> is correctly chosen, both the
distorted and undistorted points will be in the same direction,
so ru will be positive.

5.4 The Monotonicity Assumption for Radial
Distortion Function

If we were able to select the correct value of the vector v,
then the points ðrd; ruÞ would lie along (or, with noise, close
to) a monotonic curve, as illustrated in the scatter plot of
Fig. 8. For any other (incorrect) value of v, the scatter plot
would be irregularly scattered because of the different
scaling of each value ru according to v>xc. It is our goal to
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find the value of v that reduces the scatter plot to a
monotonic smooth curve. Perhaps surprisingly, this can be
accomplished well by simple least-squares techniques.

We begin by arranging the values of rd in ascending order
and indexing them in order by an index i: We write
rdi ; i ¼ 1; . . . ; N . Note that the ordering of the radii rdi is done
only once. The corresponding value of rui ¼ r̂ui =ðv>xcÞmay be
thought of as a discrete function of the values rdi . We define the
total squared variation of this function to be

V ¼
XN�1

i¼1

ðruiþ1 � rui Þ
2:

If the values of rui are a monotonic function of rdi , then the
total squared variation of this function will be relatively
small compared to that of an irregular function. In fact, it is
easily seen that, for a monotonic function, V < ðruN � ru1Þ

2

and, in fact, if the values of rui are evenly scattered between
ru1 and ruN , then V 7!0 as N 7!1. In measurements involving
a large number of points, the radii will, in general, be well
scattered and the value of the total squared variation will be
small, although we do not expect it to vanish completely.
Our method, therefore, is to minimize the total squared
variation V as a function of the parameter vector v.

The above discussion extends easily to the case of multiple
images. In this case, we consider the radii of the points in all
images together and order them in one single list. The
undistorted radius ru is equal to r̂u=ðv>k xcÞ, where k is an
index representing the image number. For each image k,
there will be a different homography Hk and a different
corresponding vector vk. The total square variation must be
minimized over the choice of all vk.

5.5 Minimizing Total Squared Variation

We wish to minimize

XN�1

i¼1

ðruiþ1 � rui Þ
2 ¼

XN�1

i¼1

r̂uiþ1

vkðiþ1Þ>xciþ1

� r̂ui
vkðiÞ>xci

� �2

; ð2Þ

where kðiÞ represents the image number corresponding
to the ith point. As it stands, this is not a linear least-
squares problem. However, multiplying each term by
ðv>kðiþ1Þx

c
iþ1Þ

2ðv>kðiÞxciÞ
2 leads to

XN�1

i¼1

r̂uiþ1vkðiÞ
>xci � r̂ui vkðiþ1Þ

>xciþ1

� �2
; ð3Þ

which must be minimized over all vk. Note that, apart from
the values of vk, all other quantities appearing in this
expression are known. The minimization problem is one of
minimizing the squared norm of the ðN � 1Þ-dimensional
vector with entries

r̂uiþ1vkðiÞ
>xci � r̂ui vkðiþ1Þ

>xciþ1; ð4Þ

which are linear in the entries of the vectors vk.
Evidently, as it stands, the norm of the above vector is

minimized by setting all vk to zero. In order to avoid this, we
may impose the supplementary condition that

P
k kvkk

2 ¼ 1.
As discussed in Section 4, there is an ambiguity between the
focal length of the camera (or equivalently, in this case, the
scale of the homography) and a multiplicative factor applied
to the radial distortion function that allows us to enforce
such a condition.

Now, we may write the vector with entries given in (4) as
AV, where V is a vector containing all of the entries of the
vk and A is the matrix of coefficients, which may be easily
constructed from the known values of all the r̂ui and xci . This
problem can be solved by minimizing kAVk, subject to the
condition kVk ¼ 1. An alternative (which we prefer) is to
impose the condition on vkðNÞ that ensures that
rdN ¼ ruN ¼ r̂uN=ðvkðNÞ>xcNÞ, namely, that the distorted and
undistorted radii are equal for the point most distant from
the center of distortion. This gives a linear equality
condition on vkðNÞ and leads to a simple linear least-squares
estimation problem. (Note that we are free to make this
assumption that rdN ¼ ruN because of the ambiguity between
the scale of the distortion and the overall scale represented
by the calibration matrix, specifically the focal length.)

Note that we linearized the problem by multiplication
by ðvkðiþ1Þ

>xciþ1Þ
2ðvkðiÞ>xciÞ

2, which results in an unequal
weighting of the individual equations and means that we
do not exactly minimize the total squared variance of the
distortion curve. However, this effect is quite benign since
the values of vkðiÞ

>xci represent the depth of the calibra-
tion point in the direction of the camera’s principal ray.
Under the assumption that of all these depths are
approximately equal, all of the equations are weighted
approximately equally. The advantage is that it changes a
nonlinear estimation problem into a linear one. When
testing this algorithm, we followed the linear estimation
step by nonlinear refinement to minimize the true total
squared variance, as well as various other geometrically
derived conditions designed to lead to a smooth mono-
tonic distortion curve. Suffice it to say that the improve-
ments achieved were minimal.2

5.6 Local Linearity of Radial Distortion

An alternative method for enforcing the monotonicity
constraint on the radial distortion function makes use of a
different criterion than the total squared-variance criterion
discussed above.

Instead, we use an assumption of local linearity, which
means that the radial distortion curve (see Fig. 8 for an
example) is locally linear, at least on the scale of the distance
between consecutive radial samples. As seen in the graph,
typically, we have a very large number of such samples and
the distance between them (radially) is quite small. Thus, an
assumption of linearity is easily justifiable.

Let rdi�1, rdi , and rdiþ1 be three consecutive values for the
distorted radial distance from the center of distortion,
ordered by their magnitude as before. There exists a constant
�i such that rdi ¼ ð1� �iÞrdi�1 þ �irdiþ1. These values, �i, may
be computed in advance. Under an assumption of linearity,
the undistorted radii satisfy a similar relationship:
rui ¼ ð1� �iÞrui�1 þ �iruiþ1. Therefore, we define the follow-
ing error term:

ei ¼ð1� �iÞrui�1 � rui þ �iruiþ1

¼ð1� �iÞ
r̂ui�1

vkði�1Þ>xci�1

� r̂ui
vkðiÞ>xci

þ �i
r̂uiþ1

vkðiþ1Þ>xciþ1

for i ¼ 2; . . . ; N � 1:

ð5Þ
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2. To be precise, nonlinear refinement caused less than 1.2 percent
decrease in residual in the example of Fig. 3 and no improvement in the
final result.



Since three potentially different terms appear in the
denominator of this expression, there is no obvious way
in which this can be made into a linear function of the vk.
Nevertheless, it is possible to apply iterative minimization
techniques (such as Levenberg–Marquardt) to this problem
to minimize the cost over all choices of the vectors vk.

Note that it is not vitally essential that all of the values of
the rdi be precisely ordered during this minimization.
Approximate ordering is sufficient for an assumption of
local linearity to be valid. During nonlinear iterative
optimization of this function, the value (and, hence, the
ordering) of a radial distance value rdk does not change.
However, it is possible to include the coordinates of the radial
distortion center as a parameter in a full bundle adjustment to
refine the final solution. In this case, the radial distances
change and so does their order. Note that the radial distance
changes most significantly for points near the center of
distortion; however, for these points, the radial distortion
function is most nearly linear, so the local linearity assump-
tion is still valid during movement of the center of distortion.

5.7 Estimation of the Radial Distortion Function

In this paper, we deliberately do not consider parameter-
ization of the distortion function. This distortion function is
often modeled as rd ¼ ruð1þ �1r

u2 þ �2r
u4 þ . . .Þ. Such a

distortion function does not work well for large distortions
such as those given by fish-eye lenses. It is a strength of our
method that it does not rely on any particular distortion
model and it has been tested successfully on fish-eye, wide-
angle, and narrow-angle lenses.

Of course, ultimately, the curve must be approximated by
some technique to be useful for image correction. There is a
large literature on the topic of function approximation (see [1]
for a good summary). Separating out the problem of
determination of a parameterized approximation of the
correction curve allows more sophisticated techniques and
algorithms to be used. These include approximation of the
distortion function by Chebyshev polynomials or the Remes
minimax algorithm. Direct estimation of the polynomial
coefficient (�i) or use of a Taylor expansion is ill-conditioned
or suboptimal [1]. The method we preferred for the examples
given later involved approximation of the distortion function
expressed in terms of angular distortion of points on a
spherical rather than planar retina, though that is not a critical
choice, except for very wide angle lenses. An alternative is to
compute a parameter-free model for the distortion curve by
computing the radial displacement at each radial value as a
sliding median of local measurements.

5.8 Camera Calibration

Estimation of the vectors vk allows us to complete the
homography matrices Hk. From this, we can compute the true
undistorted projection of each of the calibration points xc into
the image. Given these homographies for at least three
images, we are able to compute the calibration matrix of the
undistorted cameras using the algorithm of [24].

Specifically,knowingthehomographiesHk,wemayproject
the images of the circular points [12], namely, (1,�i, 0) into the
image plane. The images of the circular points lie on the image
of the absolute conic (IAC), denoted by! ¼ ðKK>Þ�1. Since the
IAC is a conic, it may be estimated using five or more points,
hence, three or more images. Although these points are
complex points, satisfying x>!x ¼ 0, separation of real and

imaginarypartsgives twolinear equations in the fivedifferent
entries of the symmetric 3� 3 matrix!. The equations take the
form h>1 !h1 ¼ h>2 !h2 and h>1 !h2 ¼ 0, where h1 and h2 are the
first two columns of the homography matrix Hk. Finally, the
calibration matrix is computed by solving ! ¼ ðKK>Þ�1 by
inversion and Cholesky factorization.

Due to the ambiguity of the distortion function and the
focal length, it is customary to scale the distortion function so
that undistorted and distorted points are the same in the limit
for small radii. This is what we do for the reported results.

5.9 Nonsquare Pixels

If the pixels are not square, then distortion is still radial, but
the radial distortion function is not symmetric.

We are faced with a chicken-and-egg situation: If we knew
the aspect ratio of the pixels, then we could correct for it
before trying to estimate the distortion curve. However, we
cannot estimate the camera calibration without first comput-
ing the homographies, which is tied to computing the
distortion curve.

Despite this, we found that, by simply proceeding with the
algorithm as described, estimation of the homographies and
distortion curve, followed by internal calibration, led to an
accurate estimate of the aspect ratio of the pixels. This would
allow us to correct for the aspect ratio and recompute the
distortion curve. The explanation for this is that, even with
errors in the expansion ratio due to nonsquare pixels, the
distortion curve has the correct shape and leads to the correct
value of the vk. The effect of assuming square pixels when
they, in fact, are not leads to a slight broadening of the
distortion curve but not to a change in its shape. Note that the
assumption of square pixels is only required in the phase of
the algorithm involving computation of the last row of each
Hk. Computation of the center of distortion and the first two
rows of each Hk is independent of this assumption.

5.10 Bundle Adjustment

The algorithm we have described is entirely noniterative
and is consequently very rapid. We do not suggest that an
iterative refinement of the results would not improve
accuracy. However, this method provides a quick and
not-so-dirty estimate of the camera calibration and radial
distortion. Iterative methods could be used:

1. In estimation of the fundamental matrices (we used
the simple normalized eight-point algorithm). For
the multiview case, the condition that all of the
epipoles are the same could be used.

2. In estimation of the vectors vk, completing the
homographies. We tried iterative techniques that
minimized the total squared variance exactly and
also the method that tends to enforce local linearity
using the cost function (5). The improvement was
quite minor.

3. In computation of the calibration matrix K.
4. For final bundle adjustment in which we should

minimize the reprojection error over the parameters of
motion (pose of each camera), the calibration matrix,
and some description of the distortion curves. This
would surely give some small decrease in reprojection
error. However, parameterizing the distortion curve
explicitly and nonlinear estimation can lead to over-
fitting. Our linear results obtained a root-mean-square
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(RMS) reprojection error of 0.4 pixels, which is close to
the minimum one might expect.

6 RESULTS FOR THE PLANAR CALIBRATION GRID

In this section, we present distortion removal results for a
known planar calibration grid.

The calibration pattern is a checkerboard with black-and-

white squares (Fig. 2a). The corners of the checkerboard are

extractedbyfindingedgesandcomputingintersectionpoints;

sample results are shown in Fig. 2b. We used 19 images of the

checkerboard taken at various poses.
After we applied our technique as described in Sec-

tions 5.1-5.8, we obtain the graph of radial shifts as a

function of radial position as shown in Fig. 3.
Fig. 4 shows the distribution of the estimated distortion

center in three cases: 1) Each image used separately, 2) five

images randomly chosen from 19, and 3) 10 randomly chosen

images. The distortion center estimated using all 19 images is

(306.7, 260.5) and the image center is (320, 240). The principal

point distributions extracted using the same experiments are

shown in Fig. 5. (The principal point, unrelated to the center

of distortion, is the foot of the perpendicular from the

projection center to the image plane.) The principal point

estimated using all 19 images is (312.0, 244.8). Note that,

while the estimated principal point is close to the image
center, the estimated distortion center is not.

We used the estimated image noise (based on RMS error
fit of � ¼ 0:4) and performed Monte Carlo simulation with
1,000 random trials. The results are shown in Fig. 6.
Compare the locations of the estimated distributions for
the center of distortion and principal point and the image
center. The mean for the distortion center is (304.3, 259.2),
with a standard deviation of (0.87, 0.60). The mean for the
principal point is (310.6, 244.6), with a standard deviation of
(0.58, 2.26).

We applied the computed radial distortion mapping to a
number of different input images for correction. Two results
are shown in Fig. 7.

In another set of experiments, we applied our planar
calibrationtechniqueonthreeadditionalcameras.Thesethree
cameras are of the same type (PointGrey Fleas, resolution of
1; 024� 768), use the same type of 4 mm lens, and have the
same settings. The results based on 10 images of the checker-
board pattern are shown in Table 1. Notice the significant
differences in the locations of the estimated distortion center,
estimated principal point, and image center. Notice also the
significant differences in the estimated distortion center and
principal point for the same type of cameras.

We also applied our technique to cameras with fish-eye
lenses. The first camera has a field of view close to 180�. A
sample image of the checkerboard pattern (we use eight
calibration images), the extracted grid, and radial distortion
results are shown in Fig. 8. The image resolution is
1; 536� 1; 024, the extracted distortion center is (744.4,
488.2), and the principal point is (767.5, 492.4) (compared
to the image center (768, 512)). As can be seen, the corrected
results look very reasonable.

The second camera is fitted with a fish-eye lens with a field
of view of about 190� (Fig. 9). Here, the image resolution is
only 640� 480; in this case, we manually picked the locations
of corners (in three calibration images) to within a pixel to
limit the image errors. The extracted distortion center is
(321.3, 267.2) and the recovered principal point is (346.4,
258.4), compared with the image center at (320, 240). Again,
our corrected result looks reasonable.

For fish-eye lenses that extend beyond 180�, the undis-
torted radii are undefined on a planar retina (since they
become infinite). However, they are well defined on a
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Fig. 2. (a) An image of a checkerboard and (b) the detected grid.

Fig. 3. Graph of radial distortion ru � rd versus radial position rd using

corner points from 19 checkboard images. The number labels are all in

pixels; the image resolution is 640� 480. In this case, we achieved an

RMS error of 0.4 pixels in modeling the measured image points.



spherical retina. It is still possible to apply the linear

algorithm for computing the distortion curve in this case

because of the following observation: There is no problem at

all with the phases of the algorithm involving computation of

the center of distortion (Section 5.1) or the estimation of the

first two rows of the homography matrices (Section 5.3).

There is an apparent difficulty with the definition of the total

squared variance in Section 5.5 since some of the terms of (2)

may approach infinity. However, in estimating the final

rows vk of the homography matrices by minimizing the total

squared variance using (2), it is not necessary to use all the
points. In particular, one may omit points toward the
periphery of the image in carrying out this computation,
thereby avoiding the problem of points with infinite (or
beyond-infinite) undistorted radii. In using the linearized
cost function (3), the problem of infinite terms disappears.

No radial distortion. The previous examples were of
cases where there was substantial radial distortion. The
following question arises: What happens if there is no
radial distortion in the first place? As pointed out
previously, in this case, the center of radial distortion is
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Fig. 4. Distributions of distortion center. (a) Using single image separately (19 inputs). (b) Using random sets of five images chosen from 19 (5 of 19).

(c) Using random sets of 10 images (10 of 19). Note the different scales in the graphs. The number labels are all in pixels; the image resolution is

640� 480.

Fig. 5. Distributions of principal point. (a) Using random sets of five images (5 of 19). (b) Using random sets of 10 images (10 of 19). Note the
different scales in the graphs. The number labels are all in pixels; the image resolution is 640� 480.



not well defined. We suggested a test based on the degrees
of freedom for the fundamental matrix. Alternatively, a
sanity check can be used to check the value of e (if it is too
far away from the image center, for example) and the
shape of the distortion curve (if it is all close to zero
distortion with random noise) to decide on the presence
of distortion. In simulations, we obtain very unlikely
values for e and virtually zero distortions. In one typical
run, we obtained e ¼ ð�593:9;�1; 576:4ÞT for a noiseless
640� 480 image with 100 well-distributed points and the

amount of distortion was virtually zero. Here, the best fit
fourth-order distortion polynomial was

xu ¼ xd
�

1þ 1:7� 10�10jxdj � 1:3� 10�13jxdj2 þ 4:2

� 10�17jxdj3 � 5:1� 10�21jxdj4
�
:

7 EXTENSIONS OF THE BASIC IDEA

We describe several extensions to this calibration method
based on the general idea of using structure and motion
techniques (similar to the use of the fundamental matrix
above) to estimate radial distortion. We have implemented all
of these methods in some form and verified their correctness.

7.1 Using a Nonplanar Calibration Grid

The method was described in Section 5 in terms of using a
known planar calibration grid. However, the method carries
over entirely to a nonplanar calibration rig. Instead of
modeling the mapping of the calibration grid to the image
using a 3� 3 homography matrix H, the mappings
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Fig. 6. Monte Carlo simulation (1,000 trials with � ¼ 0:4). The number

labels are all in pixels; the image resolution is 640� 480.

Fig. 7. Two distortion removal results: (a) inputs and (b) corrected outputs.

TABLE 1
Comparison of Results for Three Different Cameras

(Same Model and Same Type of 4 mm Lens)

cd, cp, and c0 are the distortion center, principal point, and image center,
respectively. cd and cp were computed based on 10 images of the same
checkerboard pattern at different poses.



are modeled as camera projections using a standard

3� 4 projection matrix P. Instead of a fundamental-matrix G

(which has a 3� 4 dimension) in just the same way in which

one estimates the fundamental matrix. Computation of the

final row v of the projection matrix P proceeds as before, as

does estimation of the distortion curve. The only difference

involves the computation of the calibration matrix. Instead of

needing three views to compute K, it can be computed from a

single view. A single projection matrix P gives five equations

in the entries of !, namely, p1
>!p1 ¼ p2

>!p2 ¼ p3
>!p3 and

p1
>!p2 ¼ p2

>!p3 ¼ p1
>!p3 ¼ 0. Thus, we can solve for !

and, hence, K from a single view or from many views by linear

least-squares techniques.
We tried this method on synthetic data and verified that it

worked with similar accuracy to the planar method. We also

tried the technique on a real nonplanar calibration grid. The
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Fig. 8. Fish-eye image experiment: An image of the checkerboard and extracted grid (top row), the radial distortion curve (undistorted versus

distorted angle in radians, top row, right), two originals (middle row), and two radially corrected images (bottom row).

Fig. 9. Another fish-eye image experiment: two darkened images of a checkerboard and manually picked points (top row), the radial distortion curve

(undistorted versus distorted angle in radians, top row, right), original and radially corrected images (bottom row) (fish-eye images courtesy of Nick

Barnes and Cedric Pradalier).



four input images (each of 3; 264� 2; 448 resolution) are
shown in Fig. 10; here, we manually find the 2D coordinates
associated with the 3D locations on the calibration box. The
accuracy of the 3D locations is within about 1 mm
(corresponding to 3-5 pixels) and the 2D image locations are
within 1 pixel. The extracted curve and the result of
undistorting an image captured using the same camera are
shown in Fig. 11. As can be seen, despite the uncertainties
associated with the 3D and 2D locations of the calibration
points, the corrected image looked very reasonable.

7.2 Doing without the Calibration Grid

It is natural to ask whether we could do without the
calibration grid entirely. The method described above used
the fundamental matrix as the main algebraic tool. However,
the process is analogous to determining the pose of a camera
using line correspondences. Indeed, in the case of 3D points,
the correspondence equation xd>GXc ¼ 0 is of precisely the
same form as the equation l>PX ¼ 0 for the image of a point X
to lie on a line l when projected by camera matrix P. Thus, the
determination of the projection matrices and the center of
distortion is similar to that of reconstruction from line
correspondences. In fact, the line reprojection problem can
be solved using the quadrifocal tensor with four views.
Corresponding distorted points xj ¼ ðx1

j ; x
2
j ; x

3
j Þ
> in image j

for j ¼ 1; . . . ; 4 will satisfy the relationship

X3

p¼1

X3

q¼1

X3

r¼1

X3

s¼1

xp1x
q
2x

r
3x

s
4Qpqrs ¼ 0;

from which it is possible to compute the quadrifocal tensorQ
[10] and, hence, the projection matrices [9]. There is a slight
complication that two solutions exist in both the quadrifocal
and trifocal cases, as pointed out in [9].

We verified that this method will work for the present
problem also. A total of 80 point correspondences are needed
since each point gives only one equation. The same method
works equally for calibration using unknown points on a

plane. In this case, we need only three views and a trifocal
tensor is used. In this case, 26 points are needed. However,
although we verified both practically and theoretically that
this method will work, experiments with synthetic data
showed the methods to be far too sensitive to noise to be
useful, at least with an unknown center of distortion.

It is appropriate to point out the relationship of this work to
that of [20]. In our work, we make no assumption on the
position of the center of distortion. Thirthala and Pollefeys, on
the other hand, assume that the center of distortion is known.
In this case, assuming it to be at (0, 0, 1), we can immediately
set most of the entries of the tensor to zero, leaving only 24 ¼
16 (in the 3D case) or 23 ¼ 8 (in the planar case) nonzero
entries to estimate. This large reduction in the number of
unknowns makes it likely that the method will be far more
immune to noise. Thirthala and Pollefeys considered this
problem for the case of 2D points in [20], but using 3D points is
a natural extension, which was they explored in [19].

Since this work has been extensively studied in the work
of Thirthala and Pollefeys, we omit further discussion of it
from this paper.

8 CONCLUSIONS

The procedure for radial distortion calibration described in
this paper represents a very reliable method of determining
the center of distortion and radial distortion function for a
wide range of cameras, including fish-eye lenses. At the
same time, it allows computation of the internal geometric
parameters of the camera. As a fast noniterative procedure,
it may be used to initialize a bundle-adjustment algorithm,
though, for many applications not requiring extreme
precision, it can be used on its own as a standalone
algorithm for camera calibration.

We argued the necessity of determining the radial
distortion center and showed that, for all cameras that we
tried, the distortion center was significantly displaced from
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Fig. 10. Four input images of a nonplanar calibration grid.

Fig. 11. Results for the nonplanar calibration experiment. (a) Extracted distortion graph. (b) Original image. (c) Corrected image.



the center of the image, typically by as much as 30 pixels in a

640� 480 image. Our experiments showed that this was

enough to cause an extra 0.4 pixel of error for some points in

the image (though the RMS error only increased by 0.1 pixel).

For comparison, we were able to model the measured image

points with RMS error of 0.4 pixel (see the example of Fig. 3).
Extensions to autocalibration techniques involving

images of planar or nonplanar points are possible, but

may be too sensitive to noise to be useful when the center of

distortion needs to be computed as well.
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